Giải SBT Toán 7 Bài 6: Cộng trừ đa thức


Bài 29 trang 23 sách bài tập Toán 7 Tập 2: Tìm đa thức A biết:

a. A + (x2 + y2) = 5x2 + 3y2 – xy

b. A – (xy + x2 – y2) = x2 + y2

Lời giải:

a. A + (x2 + y2) = 5x2 + 3y2 – xy

Suy ra: A = 5x2 + 3y2 – xy - (x2 + y2)

= 5x2 + 3y2 – xy - x2 - y2

= (5 – 1)x2 + (3 – 1)y2 – xy = 4x2 + 2y2 - xy

b. A – (xy + x2 – y2) = x2 + y2

Suy ra: A = (x2 + y2) + (xy + x2 – y2)

= (1 + 1)x2 + (1 – 1)y2 + xy = 2x2 + xy


Bài 30 trang 23 sách bài tập Toán 7 Tập 2: Cho hai đa thức:

M = x2 – 2yz + z2

N = 3yz – z2 + 5x2

a. Tính M + N

b. Tính M – N; N – M

Lời giải:

a. M + N = (x2 – 2yz + z2) + (3yz – z2 + 5x2)

       = x2 – 2yz + z2 + 3yz – z2 + 5x2

       = (1 + 5)x2 + (-2 + 3)yz + (1 – 1)z2 = 6x2 + yz

b. M – N = (x2 – 2yz + z2) – (3yz – z2 + 5x2)

       = x2 – 2yz + z2 - 3yz + z2 - 5x2

       = (1 – 5)x2 – (2 + 3)yz + (1 + 1)z2 = -4x2 – 5yz + 2z2

N – M = (3yz – z2 + 5x2) – (x2 – 2yz + z2)

       = 3yz – z2 + 5x2 - x2 + 2yz - z2

       = (3 + 2)yz – (1 + 1)z2 + (5 – 1)x2 = 5yz – 2z2 + 4x2


Bài 31 trang 24 sách bài tập Toán 7 Tập 2: Tính tổng của hai đa thức sau:

a. 5x2y – 5xy2 + xy và xy – x2y2 + 5xy2

b. x2 + y2 + z2 và x2 – y2 + z2

Lời giải:

a. (5x2y – 5xy2 + xy) + (xy – x2y2 + 5xy2)

= 5x2y – 5xy2 + xy + xy – x2y2 + 5xy2

= 5x2y – (5 – 5)xy2 + (1 + 1)xy – x2y2

= 5x2y + 2xy – x2y2

b. (x2 + y2 + z2) + (x2 – y2 + z2)

= x2 + y2 + z2 + x2 – y2 + z2

= (1 + 1)x2 + (1 – 1)y2 + (1 + 1)z2

= 2x2 + 2z2


Bài 32 trang 24 sách bài tập Toán 7 Tập 2: Tính giá trị của các đa thức sau:

a. xy + x2y2 + x3y3 + ….. + x10y10 tại x = -1; y = 1

b. xyz + x2y2z2 + x3y3z3 + ….. + x10y10z10 tại x = 1; y = -1; z = -1

Lời giải:

a. Ta có: xy + x2y2 + x3y3 + ….. + x10y10

      = xy + (xy)2 + (xy)3 + ….. + (xy)10

Với x = -1 và y = 1 ta có: xy = -1.1 = -1

Thay vào đa thức:

-1 + (-1)2 + (-1)3 + ….. + (-1)10 = -1 + 1 + (-1) + 1 + … + (-1) + 1 = 0

b. Ta có: xyz + x2y2z2 + x3y3z3 + ….. + x10y10z10

      = xyz + (xyz)2 + (xyz)3 + ….. + (xyz)10

Với x = 1; y = -1; z = - 1 ta có: xyz = 1.(-1).(-1) = 1

Thay vào đa thức: 1 + 12 + 13 + … + 110 = 10


Bài 33 trang 24 sách bài tập Toán 7 Tập 2: Tìm các cặp giá trị x, y để các đa thức sau nhận giá trị bằng 0:

a. 2x + y – 1

b. x – y – 3

Lời giải:

a. Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1

Có vô số giá trị của x và y để biểu thức trên xảy ra

Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)

Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)

b. Ta có: x – y – 3 = 0 ⇔ x – y = 3

Có vô số giá trị của x và y để biểu thức trên xảy ra

Các cặp giá trị có dạng (x ∈R, y = x – 3)

Chẳng hạn: (x = 0; y = -3); (x = 1; y = -2)


Bài 6.1 trang 24 sách bài tập Toán 7 Tập 2: Cho các đa thức

P = 3x2y − 2x + 5xy2 − 7y2 và Q = 3xy2 − 7y2 − 9x2y – x – 5.

Tìm đa thức M sao cho

a) M = P + Q

b) M = Q – P

Lời giải:

a) M = P + Q = 8xy2 − 6x2y − 3x − 14y2 – 5.

b) M = Q – P = 2xy2 − 12x2y + x − 5


Bài 6.2 trang 24 sách bài tập Toán 7 Tập 2: Giá trị của đa thức tại xy - x2 y2 + x3 y3 - x4 y4 + x5 y5 - x6 y6 tại x = -1; y = 1 là:

(A) 0;

(B) -1;

(C) 1;

(D) -6

Hãy chọn phương án đúng.

Lời giải:

Chọn đáp án D

Back